NEW GEOPHYSICAL OBSERVATIONS ALONG THE KLAMATH-BLUE MOUNTAINS LINEAMENT AND WALLULA FAULT ZONE, NE OREGON AND SE WASHINGTON

Lydia M. Staisch, Scott E.K. Bennett, Richard J. Blakely, Kelsey Wetzel, Tait E. Eamley

ABSTRACT

Ground Magnetic Anomaly [nT]

Figure 1A. Geologic map

Figure 1B. Isotopic residual gravity anomaly map

Figure 1C. Aeromagnetic anomaly map, reduced to pole

Figure 1D. Cross section and potential field forward model results

NEW GEOPHYSICAL OBSERVATIONS ALONG THE KLAMATH-BLUE MOUNTAINS LINEAMENT AND WALLULA FAULT ZONE, NE OREGON AND SE WASHINGTON

Lydia M. Staisch, Scott E.K. Bennett, Richard J. Blakely, Kelsey Wetzel, Tait E. Eamley

ABSTRACT

Ground Magnetic Anomaly [nT]

Figure 1A. Geologic map

Figure 1B. Isotopic residual gravity anomaly map

Figure 1C. Aeromagnetic anomaly map, reduced to pole

Figure 1D. Cross section and potential field forward model results

INTRODUCTION

Wallula Fault cross sections (WF-1 and WF-2)

Analysis of gray-scale radar interferograms shows that our new interferograms have much higher coherence than previous studies, allowing for a more detailed assessment of the fault's geometry and displacement.

Wallula Fault cross sections (WF-1 and WF-2)

Analysis of gray-scale radar interferograms shows that our new interferograms have much higher coherence than previous studies, allowing for a more detailed assessment of the fault's geometry and displacement.

Wallula Fault cross sections (WF-1 and WF-2)

Analysis of gray-scale radar interferograms shows that our new interferograms have much higher coherence than previous studies, allowing for a more detailed assessment of the fault's geometry and displacement.

Wallula Fault cross sections (WF-1 and WF-2)

Analysis of gray-scale radar interferograms shows that our new interferograms have much higher coherence than previous studies, allowing for a more detailed assessment of the fault's geometry and displacement.